PDF E HB-07-02	Handbook Steel Wire Ropes Paul Gerd Voigt	c:\ Handbook
08	Technical Information, Rope Properties, Rope Behaviour,	08-Tecin
84	Factors influencing the Fatigue Life of Ropes	04-03-05-03.
0.4	Service Life Factors	doc
843	Outer Influences Factors related to Application Equipment	
0.4.0	Operation & Handling Environment Design of Equipment	
8435	Fleet Angles, Rone Rotation, Rone Torque by Rone Guiding	Page 1 of 9
0.41010	Diagonal Pull	5
8.4.3.5.3	Rope Damage by Diagonal Pull (Fleet Angle) in field Operation	2005-03-03
		See
8.4.3.5.3.1	- Diagonal Pull (Fleet Angle) at Crane Ropes, Draglines	
8.4.3.5.3.2	- Diagonal Pull (Fleet Angle) at Friction Hoist Ropes	
	(Underground Mining)	
-1	In field application diagonal pull (fleet angle) can not only	
	reduce the service life of the rope it can also create severe rope	
	damage.	
-2	In Bulletin 88 OIPEEC Mr H. M. Huber reports "Extreme Rope	
	Rotation "related to diagonal rope pull.	
	At the Conference of IFT University Stuttgart Nov. 2005 Dr. Dipl.	
	Ing. Silke Schönherr reported above the "Reduction of Fatigue Life of	
	wire ropes because of diagonal pull between rope sheaves".	
	Also D. Fuchs. has mentioned that already at fleet angles above 1°	
	at friction hoist ropes with 6-strand Lang lay ropes and also with	
	regular lay ropes problems appear in rope structure, especially at	
	great depth. Using adequate Rope Constructions e. g. more stable	
	constructions, three Layer oval strand ropes (rotation resistant)	
2	Factors influencing Rone Life & rone demoge	
-3	Pactors initialities Rope Line & rope damage.	
	construction stiffness of rone structure strand, wire-clearances	
	arade of performing (Helix-beight & belix length) rope rotational	
	behaviour without tension (rope loop turn test)	
	Equipment and handling, operating related:	
	Fleet angle (diagonal pull), load range of stresses & tension, total	
	unloading, rope length, hoisting height, forced rope rotation.	
	acceleration & deceleration, combination of rope rotation and rope	
	tension.	
-4	Some experiences of rope damage in the field at rope diagonal	
	pull (fleet angle):	
-4.1	Ropes were installed on an overhead crane in a steel mill. Figure	
	4.1.1 and 4.1.2. Rope diameter 40 mm \emptyset , 6x36WS IWRC zZ. After a	
	short time wires in the rope became loose in Zone A-B continually	
	increasing. A little bit later also wires became loose (lifted wires 5.1)	
	also in Zone CD.	
	One rope system (Figure 4.1.2)	
	Fleet angle at highest hook position 6°. Groove ope ning angle 40°.	
	Groove radius 21 mm.	
	I he tope had to be removed because of loose wires in these zones.	
	In all the other rope zones the rope was completely intact At the	
I	entrance on the drum and analogous in zone CD the rope was]

-6	Dr. D. Fuchs (formerly DMT) point of view to the fleet angle problem:	
	Ropes, running under a fleet angle diagonal into the groove of a	
	sheave or drum undergo a force attack on its surface in	
	circumference direction. The effect of this in circumference operating	
	force on the stability of the rope structure depend on different	
	factors:	
	- fleet angle	
	- rope construction law direction	
	rope diameter	
	- Tope diameter	
	- rope length	
	- grade of preforming	
	- related rope tension	
	An increasing angle has the consequence of an increase of the	
	working circumference force.	
	The effect of the circumference force is increasing with the rope	
	diameter because of the growing lever. The stability of the rope	
	structure against this attack, which causes to loosen the rope	
	structure or the creation of bird caging, determines the resistance.	
	Determining are therefore the selection of the rope construction and	
	lav direction.	
	A rope closing rotation supports the resistance of the selected rope	
	construction 1)	
	Further influences are the rope length and the working tensile forces	
	Whereby the rope tension is having a special significance. Above a	
	certain height, the rone tension forces are able to stabilize the rone	
	structure against the attacking circumference forces successfully. If	
	the working tensile forese are below the limit which enables the	
	une working tensile forces are below the limit, which enables the	
	support of the tope construction, the disturbance of the tope	
	structure will occur.	
	The critical condition for the relevant rope construction appears, if	
	the working tensile forces are going towards zero.	
	Taking in account the condition of the rope drive and the working	
	condition a targeted selection of a rope construction can work	
	against the problems.	
	This means that for friction mine hoist installations with large rope	
	diameters and very long ropes, already at rope deflection angles of >	
	1 degree, the selection of rope constructions is limited.	
	1) Remark: There is a difference between single layer and multiple	
	layer (rotation resistant) rope constructions.	
-7	Literature:	
_	1) H. M. Huber, Bulletin 88 OIPEEC "Extreme Rope Rotation"	
	2) Schönherr, S. Dr. "Reduzierung der Lebensdauer von Drahtseilen durch	
	Schrägzug bei Seilscheiben". IFT Universität Stuttgart Feb. 2005	
	3) Voigt, P.G. Handbook Steel Wire Ropes, Section. 7 Rope Damage, &	
	8.4.3.5.3 Rope damage because of diagonal pull (Fleet Angle)	
	4) Fuchs, D. Sicherheit & Lebensdauer von Fordersellen, Gluckauf 122 (1986)	
	5) G Rebel Torsional behaviour of triangular strand ropes for drum	
	winders. OIPEEC Bulletin 74. 1997	
	6) Costello, G. A. Theory of Wire Rope. §7. Birdcaging in Wire Rope.	
	§8. Rope Rotation	